Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.

نویسندگان

  • Ferhun C Caner
  • Zaoyang Guo
  • Brian Moran
  • Zdenek P Bazant
  • Ignacio Carol
چکیده

In a recent paper, Peng et al. (2006, "An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis," ASME J. Appl. Mech., 73(5), pp. 815-824) developed an anisotropic hyperelastic constitutive model for the human annulus fibrosus in which fiber-matrix interaction plays a crucial role in simulating experimental observations reported in the literature. Later, Guo et al. (2006, "A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Fibrosis," J. Mech. Phys. Solids, 54(9), pp. 1952-1971) used fiber reinforced continuum mechanics theory to formulate a model in which the fiber-matrix interaction was simulated using only composite effect. It was shown in these studies that the classical anisotropic hyperelastic constitutive models for soft tissue, which do not account for this shear interaction, cannot accurately simulate the test data on human annulus fibrosus. In this study, we show that the microplane model for soft tissue developed by Caner and Carol (2006, "Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue," ASME J. Biomech. Eng., 128(3), pp. 419-427) can be adjusted for human annulus fibrosus and the resulting model can accurately simulate the experimental observations without explicit fiber-matrix interaction because, in microplane model, the shear interaction between the individual fibers distributed in the tissue provides the required additional rigidity to explain these experimental facts. The intensity of the shear interaction between the fibers can be adjusted by adjusting the spread in the distribution while keeping the total amount of the fiber constant. A comparison of results obtained from (i) a fiber-matrix parallel coupling model, which does not account for the fiber-matrix interaction, (ii) the same model but enriched with fiber-matrix interaction, and (iii) microplane model for soft tissue adapted to annulus fibrosus with two families of fiber distributions is presented. The conclusions are (i) that varying degrees of fiber-fiber and fiber-matrix shear interaction must be taking place in the human annulus fibrosus, (ii) that this shear interaction is essential to be able to explain the mechanical behavior of human annulus fibrosus, and (iii) that microplane model can be fortified with fiber-matrix interaction in a straightforward manner provided that there are new experimental data on distribution of fibers, which indicate a spread so small that it requires an explicit fiber-matrix interaction to be able to simulate the experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constitutive Modeling and Damage Mechanics of the Annulus Fibrosus

by Nathaniel T. Hollingsworth Annulus fibrosus damage has been shown to come from combinations of bending, lifting, and twisting. Although the these motions can induce annulus fibrosus damage, the stress-strain state of the annulus during these motions is not known. The objective of this project was to develop more complete constitutive models and to investigate annulus fibrosus damage mechanic...

متن کامل

Modeling shear behavior of the annulus fibrosus.

Modeling the mechanical properties of the annulus fibrosus has two distinct challenges: the complex loading state experienced in vivo and the anisotropic, nonlinear nature of the tissue. Previous efforts to model the annulus fibrosus have not considered shear data in the analysis, yet the shear response may be critical to understanding tissue behavior and damage. In this study, we compared four...

متن کامل

A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties

The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep t...

متن کامل

Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration.

The highly organized structure and composition of the annulus fibrosus provides the tissue with mechanical behaviors that include anisotropy and nonlinearity. Mathematical models are necessary to interpret and elucidate the meaning of directly measured mechanical properties and to understand the structure-function relationships of the tissue components, namely, the fibers and extrafibrillar mat...

متن کامل

On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material

Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 129 5  شماره 

صفحات  -

تاریخ انتشار 2007